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Spin-liquid phase of the multiple-spin exchange Hamiltonian on the triangular lattice
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We performed an exact diagonalization study of the spin-liquid phase of the multiple-spin exchange model
on a triangular lattice. It is characterized by noeN®ng-range order, short-ranged magnetic correlations, and
a spin gap. We found no long-range order in any local order parameter we investigtatl dimer, etg. The
probable asymptotic ground-state degeneracy is discussed. We argue that it could be of topological origin and
that the system is probably not a chiral spin liquid. A possible relation to the Affleck-Kennedy-Lieb-Tasaki, or
valence-bond solid phase is discusd&0163-182€09)15125-1

I. INTRODUCTION

H=J P, —J P+ Pt
A general model The multiple-spin exchangéMSE) 22 ? ° Z ( ° 3 )
model was introduced by Thoulesst is an effective de- oo Fa¥

scription of the magnetic properties of quasilocalized fermi- +Jy Z (P + p4—1) e Z (Ps + P
ons. This lattice spin Hamiltonian was introduced to describe

the magnetic consequences of tunneling events where several ﬁ 53.
i{\distipguishable particles exchange their positions..For spin- +J Z (Pe + Ps_l) _
5 particles, when two-body processes are the only important
events, it leads to the familiar Heisenberg Hamiltonian {E} )
1 Due to the Pauli principle, exchange of an odd number of
H:E J;.iPi j:z J; j(2§i.§1+§), ) fermions is ferromagnetic whereas exchange of an even
i ’

number is antiferromagnetic. This is the reason for the alter-
nating signs in Eq(2) (all J,, being >0). Because of the
) ) ) equality Py, 3+ P351=P;,+Py3+P3,—1, valid for spin
where P; ; is the spin permutation operator and;2 the 1 'yinje exchange around triangles can be taken into account
(pos_mve fre.ql_Jency of the .tunnel process exchangm_g thﬁust by modifying the bard, frequencyd,— J,— 2J5. In the
particle on sitd and the particle on site But in low-density  fo|j0wing we thus assume without any loss of generality that
crystals, cyclic exchange process$gsof n=3 particles can J;=0 and that], can be=0 or <0.
be important. It is the case in low-density sofftie films At T=0 there is a first-order phase transition between a
(Ref. 2 and references thergiand in the Wigner crystal. paramagnetic phagthe ground state is a singl§t=0) and a
More generally, multiple-spin interactions witf=2 are ex-  ferromagnetic ongthe ground state is fully polarizeds
pected in spin systems where interactions are strong and car-N/2) > In this work we are interested in the ground-state
not be reduced to Heisenberg couplings. In numerous quarand first-excited-state structure in the paramagnetic phase.
tum crystals, such couplings are expected to be generated [@the behavior of this spin liquid when an external magnetic
integrating out the nonmagnetic degrees of freedom. For infield is applied will be discussed elsewhé?é?
stance, the role played by MSE in the context of metal- What kind of spin liquid is the MSE modéifany differ-
insulator transitions has been discussed recently by Chakrant quantum ground states, which differ by their spatial bro-
varty et al* Therefore it is of wide interest to understand theken symmetries and excitation spectra, have short-ranged
nature of the magnetic fluctuations introduced by MSE couspin-spin correlations and &= 0 ground state. Among the
plings. two-dimensional Hamiltonians with a single spin in the unit
The MSE spin-liquid phasén a previous work we stud- cell (no dimerization nor inequivalent bondhere are three
ied the phase diagram of the MSE model on a triangulaimportant examples where the ground-state wave function is
lattice and showed the existence of a spin-liquid pRase. understood.
this work we present a detailed characterization of the low- (i) Spin4 Klein® models. This family of Hamiltonians
energy physics of this new spin liquid. The Hamiltonian in- generalizes the Majumdar-Gdsimodel. Since any first-
volves the five simplest ring exchange patterns on the trianaeighbor valence-bond state is a ground state, the degeneracy
gular lattice: is extensive in two dimensions.
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(ii) Valence bond crystal. It has some dimer-dimer long-
ranged ordefLRO) or some more complicated plaquette or-
der. It has a spin gap and spin-spin correlations are short
ranged. The translation symmetry is spontaneously broken
and therefore the ground state is degenerate. An example
may be the frustrated antiferromagnet on the square lat-
tice3° These spatial symmetry breakings are found in large-
N limits of SU(N) model$®~1? when the spinS does not
match the coordination number (2S#0 mod 2).

(i) Valence bond solidVBS) (Affleck et al®). It exists

when the spirSon one site matches ttecoordination num- J,<0
ber of the lattice (3=2z). It breaks no symmetry and has a
spin gap buta priori, it cannot be constructed with Sp%] FIG. 1. Qualitative phase diagram of the MSE model on the

The Haldane phadin one dimensiorfinteger spif belongs .triangular lattice. The right corner is the putgmodel; the left one
to the same universality class. The ground state is nondegeis-the pureJs one. Down and up corners are the ferromagnetic and
erate (infinite-volume limit with periodic boundary condi- antiferromagnetic Heisenberg Hamiltonians. Letters and dashed
tions); spin-spin and dimer-dimer correlations decay eXpo_lines: Schematic phase diagram for the classical mcajeIF.er,ro-
nentially with distance magnetic; b, three-sublattice Na state;c, four-sublattice Nel
There are very feW models where resonances betweeﬂate;d' long-wavelength spiral state or ferrimagnetic state. Solid
short-ranged valence-bond states select a sitayid fully Iihes: likely spenario for thé=3 quantum phase_. We puta sm_all
symmetric under symmetry operatigm@mbination of them. disordered window on the uppd;=0 line but a first-order transi-

. . . N tion between ferromagnetism and three-sublatticel Meder is also
A perturbed Klein Hamiltonian could be a realizatibyiThe o 9 . ) AT
possible; some more numerical work is needed to fix this point.

J;-J,-J3 model on the square lattice might also be a candi-
date (exact diagonalizations on =16 samplé®). So far,
the short-ranged resonating valence-b@RWB) picture pro-
posed by Andersdn has not yet found an explicit realiza-
tion: there is no definite spia-Hamiltonian in two dimen-
sions with no broken translation symmetry and a)r
nondegenerate ground state. From this point of view MSE is
of great relevance since our numerical data point to shortg,
ranged correlations with no kind of LRO.

The possibility that this Nel phase is destroyed by an infi-
nitely small J, is not excluded(additional work is in
progress

(i) Our exact diagonalization data show no LRO in the
ged, region.

(iii) The energy of the ferromagnetic state is the same in
e classical and quantum cases but AF configurations gain
energy from quantum fluctuations. Therefore, the ferromag-
netic phase is slightly reduced in ti$e=% case.

On theJ,- (>0) Js line, we suggest the existence of a
spin-liquid window between the ferromagnetic and the three-
) . o sublattice Nel phase. However, this has not yet been nu-
Even in the classical limit, the ground state of the MSEmerically investigated. Another possibility is a first-order

Il. RANGE OF THE SPIN-LIQUID PHASE
IN THE MSE MODEL ON A TRIANGULAR LATTICE

Hamiltonian is exactly known only in three limits. phase transition between NLRO and ferromagnetism.
(i) PureJ,>0 case: three-sublattice Blestate.
(i) PureJ, case: four-sublattice I‘éési state (tetrahedral Il SHORT-RANGED MAGNETIC CORRELATIONS
state found by Momoi, Kubo, and N9, )
(iii) Pured, with odd n: ferromagnetic. A. No Neel long-range order

An approximate phase diagram for the classical system at The first guestion to address in the nonferromagnetic re-
T=0 has been obtained in the variational subspace of pb”%{ion is, is the system Mg long-range ordered at=0?
helice$® and in the four-sublattice subspace for theJ, Periodic boundary conditionsAs a Neel state breaks the
model (Kubo and Momoai®). From these results we can gyy2) and some spatial symmetries Bf it cannot be an
sketch thequalitative shape of the classical diagrafuotted  gxact eigenstate on a finite size system. It has to be a linear
line of Fig. D-l _ combination of eigenstates belonging to different irreducible

In the S=3 quantum system there is hardly any exactiepresentationélR’s) of the spatial symmetry group and to
result, but some regions of the diagram are understood. ifferent S sector>?2 As the dynamics of a N order pa-

(i) PureJ,>0 case: the antiferromagneti\F) Heisen-  rameter is the one of a free rotator, the corresponding low-
berg Hamiltonian has three-sublatticeeN&RO (NLRO). energy levels scale as

(ii) Large region about the purk, case: no LRO, finite
spin gap, and short-ranged spin-spin correlatins. S(S+1)

(iii) Large ferromagnetic phase including the pUe<0 E= “Nxo

. R 0

and pureJs Hamiltonians.

A possibility for the quantum phase diagram is presentedince the inertia of that rotator is proportional to the number
in Fig. 1. This simple guess relies on the following data.  of sites,N [ x, is the susceptibility per site at zero fielg

(i) Preliminary exact diagonalization results indicate that=(1/N)d(2S)/dBjg—o]. At fixed S, these states collapse to
the extension of three-sublattice”®ephase in thel,-J,  the ground state in thermodynamic limit more rapidly than
model is strongly reduced by four-spin exchange. This ighe softest magnof?. These states form tower of states
already the case at the mean-field Schwinger-boson fvel. This low-energy structure is absent in the spectra as soon as

()
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FIG. 2. First-neighbor Heisenberg spectrum on the triangular FIG. 3. Heisenberg spectrum perturbed with four-body ex-
lattice. The SW2) and spatial symmetry breakings due to the three-changel,/J,=0.1. The Nel structure is destroyed: the states for-
sublattice long-range N order appear as a set of states with anmerly embedding the symmetry breakings in the=0 case have
energy scaling a£(S)~S(S+1)/N (dashed ling The symbols been “pushed up” in energy to the continuum of excitations.
represent the quantum number of the different eigensthatisthe
wave vectork=B is the corner of the Brillouin zong¢he impulsion
is not indicated ik# 0 and#B). R, is the phase factor obtained in
a 0 rotation about the origin ana stands for a reflection about an
axis. The vertical lines indicate the energy range where the density
of states is high and all the eigenvalues have not been computed.
This has no consequence on the low-energy part of each irreducible
representation of the symmetry group, where the eigenstates are
known exactly.

N=19 Jgt=—2 J,=1

J, is not negligible. Figures 2 and 3 show how the three- r
sublattice Nel tower of state is destroyed by four-spin ex- -
change. -
Twisted boundary conditions-or the tower of states to —65 -
appear on a finite-size sample, the sublattice structure must -
be compatible with the boundary conditions. An order with a -
long-wavelength helix or an incommensurate phase is there- -
fore difficult to detect on small samples with periodic bound- -
ary conditions. Fortunately, twisted boundary conditiéns -70
allow us to overcome this difficultf* For N=19 andJ,
-2, J,=1, we scanned the Brillouin zone to determine
the twist gy which minimizes the ground-state energy. The
twist vector qq lies inside the Brillouin zone and has no
particular symmetry. If the system had some NLR&©mM-
mensurate or ngt this g, would indicate the ordering wave
vector and the spectrum would show a tower of stdfes
=(S9)?/Ny, . Figure 4 shows that it is not the case.
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FIG. 4. Spectrum with the twisted boundary conditions which
minimize the ground-state energy. Eigenstates represented by black
triangles are&k= 0 states. The spectrum shows no long-ran¢sm-
ral) order: if there was dower of statesthe lowestk=0 states

o2z . . (joined by the dashed linavould be lower than the other excita-
For spinz, S-S varies between-3/4 (singley and 1/4 tions and their energies would be proportionalsﬁ). Notice that

(triplet) and the statistical average is zero. Compared to thesgiih these twisted boundary conditions the spatial symmeteirs
extremal values, the spin-spin correlations measured in th@ept translationsas well as the S(2) symmetry are lost. BUS, is
ground state ofl,=—2, J,=1 for N=16, 24, and 28 are il a conserved quantity. The twist vector igy=0.27A;
small (Table |). Figure 5 displays the absolute value of the —0.208,, where A, and A, are middle of the boundary of the
spin-spin correlation as a function of distance. On these thregrillouin zone. By symmetry, there are twelve twists equivalent to
samples the available distances are rather srhiall j(<3) Jo-

B. Spin-spin correlations(S;- S;)
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TABLE I. Correlations(S;-S;) in the MSE ground state df e
=16, 24, and 28 sample§{=—2, J,=1). These data are plotted C ]
in Fig. 5. TheN=24 sample is a &4 lattice which does not have 0.8 - ]
the R,..;3 symmetry. The three directions are thus nonequivalent; C N=28 ]
this explains why(S-S;) has three possible values at distance 1. 06 - ® N=161
The underlined values are overcorrelated due to periodic boundary L 8 i
conditions: they correspond to antipodal sites on the torus. & 04r i
li-j| N=28 N=24 N=16 02 . % ]
1 —0.06941 —0.08925—0.06356—0.04894— -0.06614 o et i
\/§ —0.08014 —0.11194-0.03425-0.01640 —0.02887 C ° ]
2 —0.02534 —0.17823-0.02560+0.02051 —0.05996 02, Xy T
J7 +0.04983 +0.07542+0.00306—0.00454 X 0 1 R 3
3 X +0.01471 X distance

FIG. 6. Dimer-dimer correlations in the ground stgfe) of the
MSE Hamiltonian in the spin-liquid phasdd{=—2 andJ,=1).
and the data show important size and orientation dependend@ey are plotted as a function of distance between bondsNfor
(for N= 24, the system has g, ;3 symmetry and there are =16 and 28.
three nonequivalent directions

At this point, it is difficult to draw conclusions on the sublattices(NLRO) and let these large spins screen them-
spin-spin correlation decay from Fig. 5. However, a finite-selves or(2) combine the spins two by two in singlets. The
size system with periodic boundary conditions is a torus anébsence of a tower of states and significant ferromagnetic
we expect some geometrical effects for pairg) of sites  correlations has excluded the first possibilino NLRO). It
which have particular symmetries. The strongest effect is thés easy to check that the weakness of the AF correlations
enhancement of$; - §j> on samples wherp—i andi—j are  Makes the second scenario unlikely: the screening of a single
equivalent vectors: antipodal sites are overcorreléseder-  SPin at the origin involves an important number of neighbors,

lined values in Table)! If the sample has n®,,;; symme-  UP t0 distancel=2-3.(This is easily checked from the data
try, the finite-size effect or(§i-§j> at distanced=|i — j| of Table 1) This will be confirmed in the next subsection

should be weaker in the direction of the vecteri — ] which where we show that dimer-dimer correlations are weak.

is not frustrated by the periodicity of the torfislf we elimi-
nate antipodal sites and frustrated directionNia 24 only
the solid symbols of Fig. 5 remain. The behavior looks more \We define the dimer operator on a pair of sitég ) by
regular and the rapid decay suggests a rather short correlai-yj:(l_ P, j)/2. This projector is 1 on a singlet and 0 on a
tion length. triplet. The dimer correlation between a reference bond (1,2)
The point is now to understand the local structure of theand ¢, j) is D; j=(W|dy ;|| W)~ (¥|dy U )(W|d; ;| )2
ground-state wave function. There are two naive ways tQ\s for the normalization, we look for the maximum value
build anS=0 state out of a large number of spigs (1)  of D,;. It is achieved when the two bonds are com-
combine ferromagnetically the spins in a small number ofpletely  correlated and gives Di'j:<\II|dl'2|\:[I>

—(W|d; ;| ¥)(¥|d; V). So we measure dimer correlations

C. Dimer-dimer correlations

L L R L B LR by
03 A N=28 — Di,j
T 0 NZT6 : P Td, SV (L (W], 7))
15‘ 02l ] _ (Wdy i ;| W) =(W|d; ;| W)(W[dy J W) )
ta = i (1= (W[d; ;| W))(W[dy W)
i a ] pi,; is represented in Figs. 6 and 7. For this quantity, zero
0.1 o . n means that the presence of a singlet on (1,2) and the pres-
L = o 2 ] ence of a singlet oni(j) are uncorrelated. A value of 1
C a 7 means that if a singlet exists on (1,2), there is always one on
ol v 1y P I (i,j). The minimal possible value ig/j"=—(d;;)/(1
0 r =2 3 —(d;j)), which is p{‘fji“=—0.469 at distance 1 in th&l
li=il =28 ground state. We observe negative values on the four
FIG. 5. Absolute value of the spin-spin correlati¢gata of ~PONds which are at a distance 1 from the reference bond.

Table ). The vertical range goes from 0 . — 2 is the first. ~ Compared topj", these values are importa80% and
neighbor correlation in the Majumdar-Gosh chain. These scaledicrease with the system size. This testifies to an important
have been chosen to show how small the correlations are in thghort-ranged repulsion of parallel dimers and excludes the
MSE system. The solid symbols correspond to correlations fopossibility of spin-Peierls-like structures in which the lattice
which finite-size effects are expected to be the smalkeest text would be regularly tiled with parallel dimers. Figure 7 shows
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LA Qég? FIG. 8. Dimer covering of a 6/7-depleted triangular lattice. It is
not possible to tile the triangular lattice with dimers forming angles
+ /3 without defects. One site out of seven does not have any
dimer (circles. It is worth noticing that a multiple-spin exchange
Hamiltonian for which this state is an exact ground state can be
. . constructed by the procedure introduced by Kléiref. 6. The
FIG. 7. Values op; ; on theN =28 lattice: the reference_\ bond is . Klein Hamiltonian is a sum of projectors: each projector acts on a
(1,28) and the foyr most strongly correlated bonds are !n the SOIIqhombus and projects the four sites in th®# 2 subspace. All sites
line; they are at distanag= \7/2 from (1,28) and form a triangular are equivalent on the depleted lattice and the Hamiltonian can be

pattern. We notice that_the four “first neighbors” of the bond expressed as a multiple-spin exchange Hamiltonian contaPjng
(1,28) are strongly anticorrelatefsee values on6,10 (10,2 at distance 11,=5) andy3 (J)"=1) and four-body terms on a
(23,29, and(18,23]. rhombus (,=1 for Py 53 4+ H.c. andJ,;=2 for aP; 3P, , term on

the same rhombysThis state is also an eigenstate for the first-
neighbor antiferromagnetic Heisenberg Hamiltonian on this lattice.

that the local dimer distribution favors an angle ofr/3
between dimers bonds. This tendency ta &/3 ordering of
dimers already appears in the six-site system with open
boundary conditions. This systefshape of a triangles the  =—./3/9. Momoi's simulations indicate that the
smallest system with a low ground-state energy and a signifi(-K(lyzys)K(l,12,’3,)> correlation function remains long ranged
cant spin gap. In larger systems, this locar/3 structure is  up to a finite critical temperature. To check this hypothesis in
all the more pronounced as the ground-state energy is lowthe quantum case, we have computed this correlation in the
From Fig. 6 one could doubt that the dimer-dimer corre-ground state of thguantumsystem for the purd, Hamil-
lation goes to zero with distance. However, we think it is thetonian (like Momoi et al) and found a significant decay with
case for the following reasonét) Dimer-dimer correlations  distance(Fig. 9). Moreover, this correlation shows negative
are very weak. Even at short distances, the wave function haglues, which is unexpected for a ferromagnetic Ising model.
to be seen as a gas or a liquid and not as solid of din2ys. The existence of such Ising LRO in the quantum system,
The correlation at distanceb=2 decreases in a significant even atT=0, seems unlikely.
way from N=24 to N=28. (3) It is not possible to tile the

triangular lattice with dimers at 7/3 from their neighbors E" /L B B
without defaults(one site out of seven would not touch any o B T
dimer; see Fig. Band thislocal property cannot be propa- rof i 1
gated to the entire lattice. We stress that thisr/3 dimer 5. 0.4 - . N=28 7
correlation cannot picture the entire wave function. It would e i N=16 1
not account for the low first-neighbor “dimer density”: s " x ]
(S;-S;) at a distancdi —j|=1 is only very weakly antifer- v . 1
romagnetic (S;-S;)=-0.07), and forN=28, (d;,) is AT ]
even lower than the second-neighbor ¢de;); see Table I. R i
The information provided by the dimer structure of Fig. 7 is E | x |
that a low-energy state cannot be achieved without a local i ) N oAy
order with a complex geometry. % L : . f‘ . le T’.X. e
v
D. Chiral-chiral correlations {Im(P;; )Im(P; ;. .)) 0 |(123)_(1’2’3?)| :

Kubo et al. have demonstrated that the classical ground
state of thel,=1 Hamiltonian is a four-sublattice Meéstate,
where the magnetization vectors of the four sublattices for
a regular tetrahedrof¥:'® Momoi et al. showed with Monte
Carlo simulations that thelassicalsystem has a chiral phase P )=2(&XS) S =«. The value in the classical tetrahedral
transition at finite temperatuf@ This transition is associated ol d .1 .

: L - : state is({Im[P]Im[P’])=35=0.037 for any couple of clockwise
with the ferromagnetic Ising-like order parameter defined Or}rianglesP andP’ (dotted ling. If the two triangles have some sites

three sites by the operatar=2(S; X S;) - S,. In the classical  in common,{Im[P]Im[P']) may have &smal) imaginary part. In
ground state all triangles have a chiraliky=++/3/9 or x this case, the real part is plotted.

FIG. 9. Chiral-chiral correlation function for thiy=1 Hamil-
tonian. The distance is measured in lattice spacing units between

Mhe center of gravity of the two triangles. The chirality is simply
expressed with spin exchange operator Py(,) = (1/2)(P; j «
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TABLE II. Chiral-chiral correlation in the ground state of an 3630 24 18

N=28 system{Im(P;,3Im(Py/ » 3)) atJ,=1 and for two val- T 3 Z—I o e E'XL;
ues of J,. (1,2,3 and (12’'3’) are clockwise triangles, and Q 2 B . * oex —f-
[(123)—(1'2'3")| is the distance between the centers of the two a1 = . x 3
triangles. The increase of the chirality at distar@eis very likely o E | 'lm'" Y 3
to be a finite-size effect. For the three other distances we observe a © 0B = — ——
significant decrease of chirality due to the first-neighbor ferromag- 0 0.02 004 0.06 0.08
netic coupling §,=—2). 3 N-!
T E 36 24 18 15
|(123)—(1’2’3’)| J,=-2,3,=1 J,=0,J,=1 -38 ;_ . X
=39 F Mo Al e )
1 —0.0285 —0.0306 L F .
V/Z B _4 ;_ I. - . x
?:1.527 +0.0280 +0.0356 41 E [
2 —0.0078 —-0.0132 25...|...|...|...|[
J7=2.646 +0.0018 +0.0009 420 002 004 006 008
N—I

FIG. 10. Energy and spin gap fds=—2 andJ,=1 as a func-
tion of 1N. Squares: evel systems. Crosses: oddl When dif-
ferent shapes have been investigatedhich is the case for most

It is true that the local fluctuations of are large: forN
=28 (T=0), («2)=0.5221 which is larger than the ex-
pectation value on Fhr.eﬁee spins: T KZ]/Tr[ 1]=0.375. .sizeg, only the shape with the lowest ground-state energy was plot-
On the other hand, it '? botf; much smaller than the MaXlieq. The exception foN=24 and 12 is meant to illustrate the si-
mum quantum value of” (=3) and much smaller than the ,,;taneous decrease of the spin gap and increase of the ground-
value obtained in the low-lying singlets on the Kagole  state energy when the spins are arranged in a frustrating shape.
tice («?)=0.7)2" The last reason why the value 6k?)
should not be interpreted as sufficient evidenc& symme- |51 pepayior of the spin gap and ground-state energy for sys-
try breaking is th_at it contains no information but the first- tems with less thal=24 sites(Fig. 10 indicates the short-
neighbor correlation ranged rigidity of the ground-state wave function. This

agrees with the previous section: the characteristic leggth
» 31 o 2 of the ground-state correlations is a few lattice sites, and for
(k%)= 2 Z_<S"SJ'> ' (5) systems of this size, the spectrum is sensitive to boundary
conditions. This effect can be used to probe the local struc-
ture of the ground-state wave function and to identify some
short-wavelength resonances which lower its energy. Two
duces the chirality. In the ground state & 28 atJ,=1 families of samples should be distinguished: systems with
andJ,=—2 we found(x2)=0.4791. This is readily under- evenN have a low g_round—statg energy and a higher spin gap
2 ) A ~than the systems witN odd. Within each family, the behav-
stood from Eq(5). Since(S-S)) is enhanced by a negative jor with the size is more or less monotonous: for even-
J,, local fluctuations of chirality are reduced. It is more in- (0oddN) systems the energy per site increagiereases
teresting to look a(lm[_P]Im[P’]} as a function of distance. \ith N and the spin gap decreas@screaseswith N. The
The data are shown in Table Il and support the absence Gfyportance of a six-site periodicity for achieving a low
long-ranged chiral order at the=—2 andJ,=1 points as  gnergy® agrees with the: 7/3 orientation found by looking
at the purel, point. at the short-ranged dimer-dimer correlatioffég. 7). The
enhancement of thist /3 structure in the lowest-energy
systems shows that it captures some important short-distance
IV. LOW-ENERGY SPECTRAL PROPERTIES correlations.

An important point is that both families, odd and even,

We also performed computations at the=—2 andJ,
=1 points. Unsurprisingly, the ferromagnetic coupling re-

In the previous section we have reported some correlation

data showing that the ground-state wave function of the MS erge for S'Z\?Vs\liNoz.:io (e|trt1e(; Itfhwi Io;)k atE/N or at
Hamiltonian in the spin-liquid phase has short-ranged corre: € spin gap We have interpreted this feature as a crossover

lation functions. We now describe the low-energy spectrunpehav'or' above the characteristic shig= ¢~ the finite-size

of the system. We emphasize on the spin gap and the brokt=§“|’1)"ecfjio?j decays} ixponentiall;;ffa’cgu:iguhre 12 also sr;]omws
; ; B _ a rapid decay of finite-size effects when approachig

tries. A , trat the= -2, J,=1 ‘
SYMMELres. Again, we concentrate on 4 =36. From this argument, thid=36 system can almost be

Hamiltonian. considered as having reached the thermodynamic limit. This
A. Spin gap is aII_ the more pro_bable as this sampleX(6) has the sym-
‘ metries of the infinite lattice and does not frustrate any short-
1. Finite-size effects on the ground-state energy ranged order that we observed to be favorable.

For small sizes the spin gap and ground-state energy are
sensitive to the sample shape and size. For this reason, an
N = extrapolation of the spin gap value is not straightfor- The correlation between the ground-state energy and the
ward and requires a precise analysis. The apparently irregenergy gap to the firss=1 (andS=3, if N is odd excited

2. Spin gap
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T
[ N
[

' ' We now turn to thes=0 sector and address the question of
the ground-state degeneracy and the possibility for a spatial
group symmetry breaking. This is important to characterize
the class of spin liquid this model belongs to.

1
&)

1. Singlet states in the spin gap

In nearly all even samples\N(= 36, 30, 28, 24, 18, 16, 12
the ground state belongs to the trivial representation of the
point group and translation group. This representation being
one dimensional, the ground state is nondegenerate for finite
N. Above the ground state we find always fewer than ten
" eigenstates in the spin gdpe., below the first triplet en-
ok, | . , '2|§1 - ergy). There is no extensive entropy @t=0 or any singlet
—4.2 -4 -3.8 soft mode (notice the difference with the Kagomlattice
E/N Heisenberg antiferromagrfét This implies that the system
atJ,=—2 andJ,=1 is nota quantum critical system.
FIG. 11. Same data as in Fig. 10 with the spin gap plotted as a \We have analyzed théspatia) quantum numbers of the
function of the ground state energy. low-energy singlet states to detect if some symmetry sectors
were collapsing to the absolute ground state. So far, because
state is indeed precigsee Fig. 11 the most stable systems of the poor regularity in the symmetries, this task has only
(i.e., with E/N minimum) are those with the largest spin brought partial results. Here are the most important data to
gaps. The different spectra roughly fall onto one line whenbe understood.
the spin gap is plotted versd&/N. This suggests that the (i) There is no low-energy singlet in the=B sector
position on this line is a single parameter which measures the=B are the two corners of the Brillouin zoneThis ex-
frustration of a system. On the right part of Fig. 11, systemsludes any three-step translation symmetry breaking. It also
have important frustration, because of geometric constraintsonfirms that the+ 7/3 dimer order(Fig. 7), which looks
the local structure of the wave function which would mini- three-step periodic, is onlycal.
mize the energy in the infinite systems cannot develop. Sys- (ii) The frequent occurrence kf= A states in the spin gap
tems on the left part benefit from particular boundary condisuggests that such states collapse to the ground state and give
tions which allow some stabilizing resonances and thereforg two-step translation symmetry breakingy {s one middle
an E/N lower than in the thermodynamic limit. From the of the boundary of the Brillouin zoneln particular the en-
data of E/N versusA we can estimate the position of the ergy gap between the absolute ground state and thekfirst
infinite system.E/N converges to—3.95+0.05 (safe esti- =A state drops by a factor of 10 betwedh=24 andN

mate from Fig. 10 With this energy interval, the value of =36 (2.5 atN=24 and 0.243 foN=36; see Fig. 1p
the spin gap can then be extracted from Fig. 11. We obtain (jii) The N=36 singlet sector of thd,=—2 andJ,=1

|III|IIII|II
L N
'S

A2’
'18551?5

Gap AS
fav]

H
T | L
5
o
kM)
[9)]
1 | L1111

A=13*0.5. Hamiltonian has a quasifourfold degeneracy of the ground
state(Fig. 13. The lowest energy is a single state and the
B. Ground-state symmetries in the thermodynamic limit next energy level, which is immediately above, is threefold

degenerate. Because of the large size ofNhe36 system

The spin gap described in the _previous subsection ensuUreSompared to the supposed correlation lepgtie believe
that in this region of the phase diagram the system does n@f; this feature is a particularly valuable information on the
spontaneously break $2) symmetry at low temperatures. spectrum of the infinite system.

In the next paragraphs we analyze these results. First, we
S L L B L L argue that these data are not in favor of “spin-Peierls”-like
| 24 ] symmetry breaking. Then we show that a fourfold degen-
L i eracy could be of topological origin. Third, we explain why
L 4 the system is probably not a chiral spin liquid. Eventually,
2 — we discuss the link between the MSE spin liquid and some
r 1 kind of VBS (or Haldang¢ phase on a square superlattice with
<8 ] four spins in the unit cell.

. " 2. No spin-Peierls symmetry breaking
- 30 . The N=36 singlet sector of thel,=—-2 and J,=1
- 1 Hamiltonian has a quasidegeneracy of the ground $kate
36 13). The lowest energy is a single state and the next one is
ol three-fold degeneratémpulsionsk=A , 3. As mentioned
0O 001 002 003 004 005 before, the behavior of the singlet gap to the fikst; 5 state
1/N (Fig. 12 suggests that these two levels are degenerate in the
thermodynamic limit. The next pair of energiesSs0 may
FIG. 12. Spin gap(squares and gap to the firsk=A singlet  also be seen as asymptotically degenekat® k= A, states
excited statgcrosses (Fig. 13.

A Singlet gap and triplet Gap

k




PRB 60

‘ T T i T T T T T T T
L O -
-140.5 —
i Point Gr.Rep ]
- A >* k=B,R2,,/3=j,,_iz B
L X E:g,gh/a:“‘z,g"ZI L g
- - =0R,/5=].%R, =~ -
tatr Q] K=B.Ryq=1.0=—1 ]
L * A k=BR, .=lo=1 ]
: g
—1415 | : k=A:cr=l,R’,,="—1 —
=) L Oy k=AR,=1,0=-1 1
L % k=AR=lo=1 1
"o A p k=O.R, ,=1R,=—10=—1 1
L O k=0R,s=1,0=1R,==1 | 1
-142 - A k=OR, .=LR=lo=1 |
_O -
i ArB., ]
i 5 A ]
~1425 [ B, |-
| o d
[a J ]

_qas N R
0 1 2 3

FIG. 13. Lowest-energy levels of thé=36 sample J,=—2
andJ,=1) in the sectors k=0, A, andB. The symbols represent

the quantum number of the different eigenstates. For instance, the

ground state $=0, E=—142.867) belongs to the trivial represen-
tation of the spatial grougsolid up triangle, labele=0, R,
=1, R,=1, o=1).

The point is that no pattern gives a fourfold or eightfold
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bond states one can formally extradr@northogonalbasis.
In this basis, the ground sate reads

|¢>=§ %(C)|C). @

The normalization of /) gives
(Plgy= 2 [9(C)Ty(C")2MCLeN(—1)(CUeD] (g)
c,c’

Small loop hypothesisThis equation can be rewritten in
term of a sum over the transition graphs, or loop coverifhgs
of the lattice:

<</f|w>=§ 29 (—1)9r(g), 9
where we defined
rG= 2>  #O)'wc). (10)
C,C’/CUC’:Q

This is possible because any decomposi@nC’ of a loop
coveringg has the same~{1)XCYC)=(—1)X9 as well as
the samen(CUC’)=n(g). We now turn to the important
hypothesis: we assume that the only graghghich contrib-

degeneracy compatible with the quantum numbers of thesgte to Eq.(9) are those which do not contain any loop sur-

four or eight lowest eigenstates. In particular, any long-

rounding the torus. This statement about the noncontribution

range-ordered dimer covering leads at least to 12 degeneraggtopologically nontrivial loops implies that there should not

states. For bigger patterrifour-site rhombus, for instange

be any long-distance coherence in the wave function. We

the number of broken symmetries is even larger and s@tress that this is a much stronger requirement that demand-

would be the degeneracy. Therefore, the3ldegeneracy of
the two first eigenvaluekE&0 andk=A, , 5 cannot be ex-
plained in such a conventional spin-Peierls-like picture.

3. Topological degeneracy

But this degeneracy matches the prediction of a topologi
cal degeneracy due to the periodic boundary conditions an
to the nontrivial topology of the torus.

Most of the important arguments for this topological de-
generacy were proposed by Rokhsar and KivefSoread
and Chakraborty* and Sutherlantf but here we sketch a
more formal demonstration.

Dimer and loops The starting point is a dimer represen-
tation of the wave function. As remarked by Sutherldhd,
the overlap(C|C’) between two normalized valence-bond
statesC andC’ can be diagrammatically computed by con-
structing theirtransition graph This graph is obtained by
drawing on the same lattice the oriented bond€a@ndC’.
The result is a set of locally oriented and nonintersectin
loops which cover the lattice. Let(CUC’) be the number
of loops andx(CUC') the number of bonds to be reversed
for each loop to have alternating bond orientations. The re
sult is

<C|C/>=2n(CUC’)7N/2(_1)X(CUC'). (6)
As an illustration, consider the trivial cag=C’. All loops
are of length 2 and their number i§¥CUC)=N/2. Each
two-site loop is already alternated ar@CUC)=0. So we
get (C|C)=1. From the overcomplete family of valence-

ing short dimers(for instance, a valence-borsblid or a
valence-bondrystal state do not fulfill this hypothesisin
the MSE spin liquid all the correlations we measutegin-
spin, chiral-chiral, and dimer-dimeseem to decay exponen-
tially over a distance& and we do nothing but assume that
the loops contributing to Eq9) have also a finite character-
@tic length scale. This strong condition implies the fourfold
degeneracy of the ground state. We propose the arguments
summarized below.

Cuts along the torus and fourfold degenerathe idea is
now to choose a cut surrounding the torus in one direction.
Each valence-bond stateé has a numberA(C) of bonds
crossingA and it is possible to change the sign of the con-
figurationsC for which A(C) is odd:

|w’>=§ (—1)@y(C)|C). (11)

df the sample has an odd number of sites in the direction

perpendicular td and if| ) has an impulsiot, it is easy to
check that the states’) has an impulsiok’ =k+ A, where
A is one middle of the boundary of the Brillouin zofsee
inset of Fig. 13. But we have also shov@ﬁthatwf’) has the
same energy aky) provided |) only “contains” small
loops (hypothesis above This twofold degeneracy must be
extended tdour when the sample has an23 rotation sym-
metry since irreducible representations for wave vedtor
=A are of dimension 3. A similar construction was provided
by Wer® in the framework of a mean-field model fBr and
T-symmetric spin liquids. In Wen’s work, a staté’) is
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built from the original ground states) by a singular gauge
transformation on the bonds degrees of freedom. This trans-
formation amounts to introduce @aflux quantum through a
noncontractable loop.

Now we can interpret thél=36 singlet sector in the fol-
lowing way: as the system becomes larger tifathe topo- FIG. 14. Left: black rhombus represent tBe=2 spins of the
logically nontrivial loops grow scarce exponentially with VBS wave function. They form a square latti¢dashed lines
IN/E. Consequently the lowest singlet eigenstate becomeRight: honeycomb superlattice of three-site plaquettes on the trian-
fourfold degeneratek(=0 andk=A; , ). At N=36 this to-  gular lattice. There are 18 different ways to place this honeycomb
pological degeneracy is still not very accurate but we carsuperlattice on the triangular oneX2 translations and three rota-
clearly distinguish two quasiquadruplets. tions).

Y VAV VAN
AVANAVAY

phenomenon is absent. Without any evidence of a simple
local order parameter, the topological point of view is natural
4. Chiral spin liquid and states that a ground-state degeneracy can occur without
Some time ago it was suggested that an antiferromagnet@?y local order parameter breaking a discrete symmetry
quantum spin liquid could behiral and could break the famous example |s_the Laughlin wave function, the discrete
time-reversal(T) and parity(P) symmetrie$4-%¢ This sce- degeneracy of which depends on the space topbtagy
nario was definitely discarded in the case of a simple HeiseOWeVer, the translation symmetry is almost certainly bro-
berg Hamiltonian on a triangular lattiéé.The situation on €N in the MSE caséat least four states with different im-
the Kagomdattice is more ambiguol¥.In the MSE case, Pulsions are asymptotically degenejasad one should be
the presence of a gap in the magnetic excitations and theareful before excluding the possibility ahykind of LRO.

degeneracy of the ground state in the thermodynamic limit? & Séarch for an alternative to the topological degeneracy,
would be consistent with a chiral theory. Indeed, Wear- W€ looked for explicit wave functionfor half-integer spin

gues that an incompressible chiral fluid should have a'ith a low degeneracy and the minimum number of broken

2k9-fold vacuum degeneracy on a manifold of geniuéut spatial symmetries to compare with numerical results.

this is not specific to chiral models: one also finds%t@- For high spins matching the coordination numbesS(2

pological degeneracy iR- and T-symmetric modef§). On =z) the VBS wave function is nondegenerate. When this

the other hand. as underlined before. the MSE does not Suﬁ_riterion is not satisfied, nevertheless, the VBS procedure

port LRO in th(’e chiral parametef—Z('é ><§3) éz There can help to write wave functions with few broken symme-
=2(S, .S, -

fore, the only possibility would be a hypothetical “chiral tries. The idea is to chose a superlattice witkpins in the

spin-liquid” around stat® 35 where the expectation value of unit cell and of coordination number=n. On the superlat-
pin-iiq g . P X tice, a unique VBS state is written by identifying thepins
a cyclic permutation operatd? i, acquires a non-

e PR FRPRETRES : of a cell as a larger spi8=n/2. The state we obtained has a
zero imaginary part on large l0ofs,iz,is, - . - in. INSUCh  degeneracy which is the number of possibilities to define a
theories elementary excitations are unconfined épﬂm:n_a— superlatticeL over a real(triangula) lattice. Consider th&
tions. The spectra dfi=27 andN =28 are the largest pair of -3 vBS wave function for the square lattice. It is mapped
consecutive sizes we diagonalized and are believed to bghto the spink triangular lattice by identifying theS=2
close to the asymptptic Iimit._Their cpmparison dogs NOtspins of the square lattice to four spiss 2 (on a rhombus
plead in favor of this unconfined spinon hypothesis: thepf the triangular onéFig. 14a)]. The choice of the position
ground-state energy per site =27 (ES"%/N=-3.919)  of the square superlattice is done among 12 different possi-
is slightly lower than the first triplet energy per site Bf pijities: a configuration can be translated at four different
=28 (E> '/N=-3.918 andE® %/N=-3.963). This is places and rotated in three directions. One should remark
rather a signaturg of el_ementaa'pin—l excitationgind makes  that these states do have some long-ranged ordeilI} éte
the chiral scenario unlikely. the projection operator of the rhombasin its S=2 sub-
space. By construction, the eight-point correlation function
(IT,IT,) is long ranged.
We computed the ground-state energy inside this 12-
5. VBS/Haldane system dimensional VBS subspace on a small systéir=(L2 atJ,

We have shown, so far, that the MSE spin liquid is char-=1 andJ,=—2) and found a good variational energy. The
acterized by a low ground-state degeneracy. For half-integegxact ground-state energyE8N=—4.128 and the VBS en-
spins in one dimension, the Lieb-Shultz-MattisLSM) ergy isE/N=—3.75. The energy scale is given by the en-
theorem forces the ground state to be degenerate or gaplessgy of the ferromagnetic stat€(N=0), and the energy of
Some attempts to generalize it in two dimensf8rmiggest the ground stat&/N=—3 for classical spins. This varia-
that a ground-state degeneracy could also be generic in tional result isthe best achieved so fand is even much
(half-integej gapped state in two dimensions. From this better than the Schwinger-boson energy for this Hamiltonian
point of view, our results in the MSE case are not unex{the Schwinger-boson solution is a two-sublatt{té_RO)
pected. But such a degeneracy is usually associated with @llinear state witlE/N= —2.96]. The reason for this com-
spontaneous breaking of a discrete symmetry, say, translpetitive energy is that the VBS construction naturally pro-
tion, and a dimer or plaquette local order parameter. If ounvides some local ferromagnetism inside a plaquette which
analysis of theN= 36 spectrum is correct, such a spin-Peierlslowers J,P; , and some antiferromagnetism at larger dis-
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tance (between neighboring rhombusrhich ensures a low  system has short-ranged correlatiotS;- S;), dimer-dimer,
J4(P1234tH.c.). When the size of the unit cell is varied, and chiral-chiral correlations probably decay exponentially
one tunes the strength of the antiferromagnetic correlationg;ith distance. The spectrum has a spin gap and the compari-
at short distance. For instance, it is possible to enhance it €, petween odd and even sample pleads in favor of spin-1
we start from the wave function of the=3/2 honeycomb ¢, ciations. As for the spatial symmetries and degeneracy of
Ia;tlce[Flg. 14(.b)], where the unit cell has only three sites. In 4, ground statéoresumably 4 or B they provide evidence
this case we f;]nd akr: enhergy shght'ly h'ﬁhfr/(\': —3.42'on of no spin-Peierls or simple plaquette order. This is a generic
12 siteg. On the other hand, varying the ferromagnetic COU-tg4re in systems where the spin matches the coordination
pling J, in the Hamlltonlan_ could bring the ground state number (B=2) and where a VBS wave function can be
clo1s_ﬁr tiza\XfSS wave function. led b local Hamil constructed, but it is unconventional for sginWe proposed

N states are not coupled by any local Hamil+,, interpretations. The first possibility is a VBS or

tonian in the thermodynamic limit, and should therefore be,,|jane-like phase. We constructed such a wave function

degenerate in an (ijnfirr]]itelsystem. In ahtheory whefre all excighich is not a tensor product of plaquette states. Present
tations are gapped, the low-energy p ysiezcept for pos- numerical data on the ground-state symmetries do not com-
sible edge statg@ds determined by the degenerate ground

tate. Theref this 12-fold d h tori ¢ letely agree with this particular trial state, but because of its
state. Theretore, this 1z-jold degeneracy charactenzes Wy o\ variational energy, such a scenario cannot be ex-
fixed point and we expect the same degeneracy in the MS

e : . . uded. Second, this degeneracy might be a consequence of
problem if it belongs to this universality class. Unfortunatelythe nontrivial topology implied by periodic boundary condi-

the quantum numbers only partially coincide with the Iowesttions. We emphasized that it must be the case if the system
eigenstates found in thd=36 spectrum. So despite a good has absolutely no long-ranged coherence.
variational energy oiN=12, these particular trial states do This spin-liquid phase might be the very first magnet with

npth;:;rtla(\j/i%e a quantitatit:/e ext)jlanation qf the fourfold OLa “disordered” and gapped quantum ground state with no
eightio egeneracy observed on 36 sites. However, t gimple local order parameter in two dimensions. From this

family of these extended VBS states certainly captures a paHoint of view it can be seen as a prototype of the RVB state
of the local constraints imposed by frustrating MSE cou-,4 \yas proposed by Andersbh.

plings. Furthermore, we cannobmpletelyexclude that the

N=36 might not be a faithful picture of the infinite system ACKNOWLEDGMENTS
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