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Spin-liquid phase of the multiple-spin exchange Hamiltonian on the triangular lattice
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We performed an exact diagonalization study of the spin-liquid phase of the multiple-spin exchange model
on a triangular lattice. It is characterized by no Ne´el long-range order, short-ranged magnetic correlations, and
a spin gap. We found no long-range order in any local order parameter we investigated~chiral, dimer, etc.! The
probable asymptotic ground-state degeneracy is discussed. We argue that it could be of topological origin and
that the system is probably not a chiral spin liquid. A possible relation to the Affleck-Kennedy-Lieb-Tasaki, or
valence-bond solid phase is discussed.@S0163-1829~99!15125-7#
i
ib
ve
pi
ta

th

ca
a
d
i

a
k

he
ou

-
la

w
n-
ia

of
ven
ter-

unt

at

n a

te
ase.
tic

ro-
ged

nit

n is

racy
I. INTRODUCTION

A general model. The multiple-spin exchange~MSE!
model was introduced by Thouless.1 It is an effective de-
scription of the magnetic properties of quasilocalized ferm
ons. This lattice spin Hamiltonian was introduced to descr
the magnetic consequences of tunneling events where se
indistinguishable particles exchange their positions. For s
1
2 particles, when two-body processes are the only impor
events, it leads to the familiar Heisenberg Hamiltonian

H5(
i , j

Ji , j Pi , j5(
i , j

Ji , j S 2SW i•SW j1
1

2D , ~1!

where Pi , j is the spin permutation operator and 2Ji , j the
~positive! frequency of the tunnel process exchanging
particle on sitei and the particle on sitej. But in low-density
crystals, cyclic exchange processesPn of n>3 particles can
be important. It is the case in low-density solid3He films
~Ref. 2 and references therein! and in the Wigner crystal.3

More generally, multiple-spin interactions withn>2 are ex-
pected in spin systems where interactions are strong and
not be reduced to Heisenberg couplings. In numerous qu
tum crystals, such couplings are expected to be generate
integrating out the nonmagnetic degrees of freedom. For
stance, the role played by MSE in the context of met
insulator transitions has been discussed recently by Cha
varty et al.4 Therefore it is of wide interest to understand t
nature of the magnetic fluctuations introduced by MSE c
plings.

The MSE spin-liquid phase. In a previous work we stud
ied the phase diagram of the MSE model on a triangu
lattice and showed the existence of a spin-liquid phase.5 In
this work we present a detailed characterization of the lo
energy physics of this new spin liquid. The Hamiltonian i
volves the five simplest ring exchange patterns on the tr
gular lattice:
PRB 600163-1829/99/60~2!/1064~11!/$15.00
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Due to the Pauli principle, exchange of an odd number
fermions is ferromagnetic whereas exchange of an e
number is antiferromagnetic. This is the reason for the al
nating signs in Eq.~2! ~all Jn being .0!. Because of the
equality P1,2,31P3,2,15P1,21P2,31P3,121, valid for spin
1
2 , triple exchange around triangles can be taken into acco
just by modifying the bareJ2 frequencyJ2→J222J3. In the
following we thus assume without any loss of generality th
J350 and thatJ2 can be>0 or ,0.

At T50 there is a first-order phase transition betwee
paramagnetic phase~the ground state is a singletS50) and a
ferromagnetic one~the ground state is fully polarized:S
5N/2).5 In this work we are interested in the ground-sta
and first-excited-state structure in the paramagnetic ph
The behavior of this spin liquid when an external magne
field is applied will be discussed elsewhere.33,42

What kind of spin liquid is the MSE model?Many differ-
ent quantum ground states, which differ by their spatial b
ken symmetries and excitation spectra, have short-ran
spin-spin correlations and anS50 ground state. Among the
two-dimensional Hamiltonians with a single spin in the u
cell ~no dimerization nor inequivalent bonds! there are three
important examples where the ground-state wave functio
understood.

~i! Spin-12 Klein6 models. This family of Hamiltonians
generalizes the Majumdar-Gosh7 model. Since any first-
neighbor valence-bond state is a ground state, the degene
is extensive in two dimensions.
1064 ©1999 The American Physical Society
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PRB 60 1065SPIN-LIQUID PHASE OF THE MULTIPLE-SPIN . . .
~ii ! Valence bond crystal. It has some dimer-dimer lon
ranged order~LRO! or some more complicated plaquette o
der. It has a spin gap and spin-spin correlations are s
ranged. The translation symmetry is spontaneously bro
and therefore the ground state is degenerate. An exam
may be the frustrated antiferromagnet on the square
tice.8,9 These spatial symmetry breakings are found in lar
N limits of SU(N) models10–12 when the spinS does not
match the coordination numberz (2SÞ0 mod z).

~iii ! Valence bond solid~VBS! ~Affleck et al.13!. It exists
when the spinSon one site matches thez coordination num-
ber of the lattice (2S5z). It breaks no symmetry and has
spin gap but,a priori, it cannot be constructed with spin12 .
The Haldane phase14 in one dimension~integer spin! belongs
to the same universality class. The ground state is nonde
erate ~infinite-volume limit with periodic boundary condi
tions!; spin-spin and dimer-dimer correlations decay exp
nentially with distance.

There are very few models where resonances betw
short-ranged valence-bond states select a single~and fully
symmetric under symmetry operations! combination of them.
A perturbed Klein Hamiltonian could be a realization.15 The
J1-J2-J3 model on the square lattice might also be a can
date ~exact diagonalizations on aN516 sample16!. So far,
the short-ranged resonating valence-bond~RVB! picture pro-
posed by Anderson17 has not yet found an explicit realiza
tion: there is no definite spin-1

2 Hamiltonian in two dimen-
sions with no broken translation symmetry and
nondegenerate ground state. From this point of view MSE
of great relevance since our numerical data point to sh
ranged correlations with no kind of LRO.

II. RANGE OF THE SPIN-LIQUID PHASE
IN THE MSE MODEL ON A TRIANGULAR LATTICE

Even in the classical limit, the ground state of the MS
Hamiltonian is exactly known only in three limits.

~i! PureJ2.0 case: three-sublattice Ne´el state.
~ii ! Pure J4 case: four-sublattice Ne´el state~tetrahedral

state found by Momoi, Kubo, and Niki18,19!.
~iii ! PureJn with odd n: ferromagnetic.
An approximate phase diagram for the classical system

T50 has been obtained in the variational subspace of pla
helices20 and in the four-sublattice subspace for theJ2-J4
model ~Kubo and Momoi18!. From these results we ca
sketch thequalitativeshape of the classical diagram~dotted
line of Fig. 1!.

In the S5 1
2 quantum system there is hardly any exa

result, but some regions of the diagram are understood.
~i! PureJ2.0 case: the antiferromagnetic~AF! Heisen-

berg Hamiltonian has three-sublattice Ne´el LRO ~NLRO!.21

~ii ! Large region about the pureJ4 case: no LRO, finite
spin gap, and short-ranged spin-spin correlations.5

~iii ! Large ferromagnetic phase including the pureJ2,0
and pureJ5 Hamiltonians.

A possibility for the quantum phase diagram is presen
in Fig. 1. This simple guess relies on the following data.

~i! Preliminary exact diagonalization results indicate th
the extension of three-sublattice Ne´el phase in theJ2-J4
model is strongly reduced by four-spin exchange. This
already the case at the mean-field Schwinger-boson lev20
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The possibility that this Ne´el phase is destroyed by an infi
nitely small J4 is not excluded~additional work is in
progress!.

~ii ! Our exact diagonalization data show no LRO in t
large-J4 region.

~iii ! The energy of the ferromagnetic state is the same
the classical and quantum cases but AF configurations
energy from quantum fluctuations. Therefore, the ferrom
netic phase is slightly reduced in theS5 1

2 case.
On theJ2- (.0) J5 line, we suggest the existence of

spin-liquid window between the ferromagnetic and the thr
sublattice Ne´el phase. However, this has not yet been n
merically investigated. Another possibility is a first-ord
phase transition between NLRO and ferromagnetism.

III. SHORT-RANGED MAGNETIC CORRELATIONS

A. No Néel long-range order

The first question to address in the nonferromagnetic
gion is, is the system Ne´el long-range ordered atT50?

Periodic boundary conditions. As a Néel state breaks the
SU~2! and some spatial symmetries ofH, it cannot be an
exact eigenstate on a finite size system. It has to be a lin
combination of eigenstates belonging to different irreduci
representations~IR’s! of the spatial symmetry group and t
different S sectors.21,22 As the dynamics of a Ne´el order pa-
rameter is the one of a free rotator, the corresponding lo
energy levels scale as

E.
S~S11!

Nx0
~3!

since the inertia of that rotator is proportional to the numb
of sites,N @x0 is the susceptibility per site at zero field:x0
5(1/N)]^2S&/]BuB50#. At fixed S, these states collapse t
the ground state in thermodynamic limit more rapidly th
the softest magnon.23 These states form atower of states.
This low-energy structure is absent in the spectra as soo

FIG. 1. Qualitative phase diagram of the MSE model on
triangular lattice. The right corner is the pureJ4 model; the left one
is the pureJ5 one. Down and up corners are the ferromagnetic a
antiferromagnetic Heisenberg Hamiltonians. Letters and das
lines: Schematic phase diagram for the classical model.a, Ferro-
magnetic; b, three-sublattice Ne´el state; c, four-sublattice Ne´el
state;d, long-wavelength spiral state or ferrimagnetic state. So
lines: likely scenario for theS5

1
2 quantum phase. We put a sma

disordered window on the upperJ450 line but a first-order transi-
tion between ferromagnetism and three-sublattice Ne´el order is also
possible; some more numerical work is needed to fix this point
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1066 PRB 60MISGUICH, LHUILLIER, BERNU, AND WALDTMANN
J4 is not negligible. Figures 2 and 3 show how the thre
sublattice Ne´el tower of state is destroyed by four-spin e
change.

Twisted boundary conditions. For the tower of states to
appear on a finite-size sample, the sublattice structure m
be compatible with the boundary conditions. An order with
long-wavelength helix or an incommensurate phase is th
fore difficult to detect on small samples with periodic boun
ary conditions. Fortunately, twisted boundary condition24

allow us to overcome this difficulty.21 For N519 and J2
522, J451, we scanned the Brillouin zone to determi
the twist q0 which minimizes the ground-state energy. T
twist vector q0 lies inside the Brillouin zone and has n
particular symmetry. If the system had some NLRO~com-
mensurate or not!, this q0 would indicate the ordering wav
vector and the spectrum would show a tower of statesE
.(Sz)2/Nx' . Figure 4 shows that it is not the case.

B. Spin-spin correlations ŠS¢ i–S¢ j‹

For spin-12 , SW i•SW j varies between23/4 ~singlet! and 1/4
~triplet! and the statistical average is zero. Compared to th
extremal values, the spin-spin correlations measured in
ground state ofJ2522, J451 for N516, 24, and 28 are
small ~Table I!. Figure 5 displays the absolute value of t
spin-spin correlation as a function of distance. On these th
samples the available distances are rather small (u i 2 j u<3)

FIG. 2. First-neighbor Heisenberg spectrum on the triangu
lattice. The SU~2! and spatial symmetry breakings due to the thr
sublattice long-range Ne´el order appear as a set of states with
energy scaling asE(S);S(S11)/N ~dashed line!. The symbols
represent the quantum number of the different eigenstates.k is the
wave vector.k5B is the corner of the Brillouin zone~the impulsion
is not indicated ifkÞ0 andÞB). Ru is the phase factor obtained i
a u rotation about the origin ands stands for a reflection about a
axis. The vertical lines indicate the energy range where the den
of states is high and all the eigenvalues have not been comp
This has no consequence on the low-energy part of each irredu
representation of the symmetry group, where the eigenstates
known exactly.
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FIG. 3. Heisenberg spectrum perturbed with four-body e
changeJ4 /J250.1. The Ne´el structure is destroyed: the states fo
merly embedding the symmetry breakings in theJ450 case have
been ‘‘pushed up’’ in energy to the continuum of excitations.

FIG. 4. Spectrum with the twisted boundary conditions whi
minimize the ground-state energy. Eigenstates represented by b
triangles arek50 states. The spectrum shows no long-ranged~spi-
ral! order: if there was atower of states, the lowestk50 states
~joined by the dashed line! would be lower than the other excita
tions and their energies would be proportional toSz

2 . Notice that
with these twisted boundary conditions the spatial symmetries~ex-
cept translations! as well as the SU~2! symmetry are lost. ButSz is
still a conserved quantity. The twist vector isq050.27A1

20.20A2, where A1 and A2 are middle of the boundary of the
Brillouin zone. By symmetry, there are twelve twists equivalent
q0.
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and the data show important size and orientation depend
~for N524, the system has noR2p/3 symmetry and there ar
three nonequivalent directions!.

At this point, it is difficult to draw conclusions on th
spin-spin correlation decay from Fig. 5. However, a fini
size system with periodic boundary conditions is a torus
we expect some geometrical effects for pairs (i , j ) of sites
which have particular symmetries. The strongest effect is
enhancement of̂SW i•SW j& on samples wherej2 i and i2 j are
equivalent vectors: antipodal sites are overcorrelated~under-
lined values in Table I!. If the sample has noR2p/3 symme-
try, the finite-size effect on̂ SW i•SW j& at distanced5u i 2 j u
should be weaker in the direction of the vectorv5 i2 j which
is not frustrated by the periodicity of the torus.25 If we elimi-
nate antipodal sites and frustrated directions inN524 only
the solid symbols of Fig. 5 remain. The behavior looks m
regular and the rapid decay suggests a rather short cor
tion length.

The point is now to understand the local structure of
ground-state wave function. There are two naive ways
build an S50 state out of a large number of spins1

2 : ~1!
combine ferromagnetically the spins in a small number

TABLE I. Correlations^SW i•SW j& in the MSE ground state ofN
516, 24, and 28 samples (J2522, J451). These data are plotte
in Fig. 5. TheN524 sample is a 634 lattice which does not have
theR2p/3 symmetry. The three directions are thus nonequivale

this explains whŷ SW i•SW j& has three possible values at distance
The underlined values are overcorrelated due to periodic boun
conditions: they correspond to antipodal sites on the torus.

u i 2 j u N528 N524 N516

1 20.06941 20.0892520.0635620.048942 -0.06614
A3 20.08014 20.1119420.0342520.01640 20.02887
2 20.02534 20.1782320.0256010.02051 20.05996
A7 10.04983 10.0754210.0030620.00454 3

3 3 10.01471 3

FIG. 5. Absolute value of the spin-spin correlation~data of
Table I!. The vertical range goes from 0 to38 . 2

3
8 is the first-

neighbor correlation in the Majumdar-Gosh chain. These sc
have been chosen to show how small the correlations are in
MSE system. The solid symbols correspond to correlations
which finite-size effects are expected to be the smallest~see text!.
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sublattices~NLRO! and let these large spins screen the
selves or~2! combine the spins two by two in singlets. Th
absence of a tower of states and significant ferromagn
correlations has excluded the first possibility~no NLRO!. It
is easy to check that the weakness of the AF correlati
makes the second scenario unlikely: the screening of a si
spin at the origin involves an important number of neighbo
up to distanced.2 –3.~This is easily checked from the dat
of Table I.! This will be confirmed in the next subsectio
where we show that dimer-dimer correlations are weak.

C. Dimer-dimer correlations

We define the dimer operator on a pair of sites (i , j ) by
di , j5(12Pi , j )/2. This projector is 1 on a singlet and 0 on
triplet. The dimer correlation between a reference bond (1
and (i , j ) is Di , j5^Cud1,2di , j uC&2^Cud1,2uC&^Cudi , j uC&.26

As for the normalization, we look for the maximum valu
of Di , j . It is achieved when the two bonds are com
pletely correlated and gives Di , j5^Cud1,2uC&
2^Cudi , j uC&^Cud1,2uC&. So we measure dimer correlation
by

pi , j5
Di , j

^Cud1,2uC&~12^Cudi , j uC&!

5
^Cud1,2di , j uC&2^Cudi , j uC&^Cud1,2uC&

~12^Cudi , j uC&!^Cud1,2uC&
. ~4!

pi , j is represented in Figs. 6 and 7. For this quantity, z
means that the presence of a singlet on (1,2) and the p
ence of a singlet on (i , j ) are uncorrelated. A value of 1
means that if a singlet exists on (1,2), there is always one
( i , j ). The minimal possible value ispi , j

min52^di , j&/(1
2^di , j&), which is pi , j

min520.469 at distance 1 in theN
528 ground state. We observe negative values on the
bonds which are at a distance 1 from the reference bo
Compared topi , j

min , these values are important~30%! and
increase with the system size. This testifies to an impor
short-ranged repulsion of parallel dimers and excludes
possibility of spin-Peierls-like structures in which the latti
would be regularly tiled with parallel dimers. Figure 7 show

t;

.
ry

s
he
r

FIG. 6. Dimer-dimer correlations in the ground stateuC& of the
MSE Hamiltonian in the spin-liquid phase (J2522 and J451).
They are plotted as a function of distance between bonds foN
516 and 28.
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that the local dimer distribution favors an angle of6p/3
between dimers bonds. This tendency to a6p/3 ordering of
dimers already appears in the six-site system with o
boundary conditions. This system~shape of a triangle! is the
smallest system with a low ground-state energy and a sig
cant spin gap. In larger systems, this local6p/3 structure is
all the more pronounced as the ground-state energy is lo

From Fig. 6 one could doubt that the dimer-dimer cor
lation goes to zero with distance. However, we think it is t
case for the following reasons:~1! Dimer-dimer correlations
are very weak. Even at short distances, the wave function
to be seen as a gas or a liquid and not as solid of dimers~2!
The correlation at distancesd>2 decreases in a significan
way from N524 to N528. ~3! It is not possible to tile the
triangular lattice with dimers at6p/3 from their neighbors
without defaults~one site out of seven would not touch an
dimer; see Fig. 8! and thislocal property cannot be propa
gated to the entire lattice. We stress that this6p/3 dimer
correlation cannot picture the entire wave function. It wou
not account for the low first-neighbor ‘‘dimer density’

^SW i•SW j& at a distanceu i 2 j u51 is only very weakly antifer-
romagnetic (̂SW i•SW j&.20.07), and for N528, ^d1,2& is
even lower than the second-neighbor one^d1,11&; see Table I.
The information provided by the dimer structure of Fig. 7
that a low-energy state cannot be achieved without a lo
order with a complex geometry.

D. Chiral-chiral correlations ŠIm „Pi ,j ,k…Im „Pi 8,j 8,k8…‹

Kubo et al. have demonstrated that the classical grou
state of theJ451 Hamiltonian is a four-sublattice Ne´el state,
where the magnetization vectors of the four sublattices fo
a regular tetrahedron.18,19 Momoi et al. showed with Monte
Carlo simulations that theclassicalsystem has a chiral phas
transition at finite temperature.19 This transition is associate
with the ferromagnetic Ising-like order parameter defined
three sites by the operatork52(SW 13SW 3)•SW 2. In the classical
ground state all triangles have a chiralityk51A3/9 or k

FIG. 7. Values ofpi , j on theN528 lattice: the reference bond i
(1,28) and the four most strongly correlated bonds are in the s
line; they are at distanced5A7/2 from (1,28) and form a triangula
pattern. We notice that the four ‘‘first neighbors’’ of the bon
(1,28) are strongly anticorrelated@see values on~6,10! ~10,2!
~23,27!, and~18,23!#.
n

fi-

.
-

as

al

d

n

52A3/9. Momoi’s simulations indicate that th
^k (1,2,3)k (18,28,38)& correlation function remains long range
up to a finite critical temperature. To check this hypothesis
the quantum case, we have computed this correlation in
ground state of thequantumsystem for the pureJ4 Hamil-
tonian~like Momoi et al.! and found a significant decay wit
distance~Fig. 9!. Moreover, this correlation shows negativ
values, which is unexpected for a ferromagnetic Ising mod
The existence of such Ising LRO in the quantum syste
even atT50, seems unlikely.

id

FIG. 8. Dimer covering of a 6/7-depleted triangular lattice. It
not possible to tile the triangular lattice with dimers forming ang
6p/3 without defects. One site out of seven does not have
dimer ~circles!. It is worth noticing that a multiple-spin exchang
Hamiltonian for which this state is an exact ground state can
constructed by the procedure introduced by Klein~Ref. 6!. The
Klein Hamiltonian is a sum of projectors: each projector acts o
rhombus and projects the four sites in theirS52 subspace. All sites
are equivalent on the depleted lattice and the Hamiltonian can
expressed as a multiple-spin exchange Hamiltonian containingPi , j

at distance 1 (J255) andA3 (J2
nn51) and four-body terms on a

rhombus (J451 for P1,2,3,41H.c. andJ4852 for a P1,3P2,4 term on
the same rhombus!. This state is also an eigenstate for the fir
neighbor antiferromagnetic Heisenberg Hamiltonian on this latt

FIG. 9. Chiral-chiral correlation function for theJ451 Hamil-
tonian. The distance is measured in lattice spacing units betw
the center of gravity of the two triangles. The chirality is simp
expressed with spin exchange operator Im(Pi , j ,k)5(1/2i )(Pi , j ,k

2Pk, j ,i)52(SW i3SW k)•SW j5k. The value in the classical tetrahedr
state is^Im@P#Im@P8#&5

1
27.0.037 for any couple of clockwise

trianglesP andP8 ~dotted line!. If the two triangles have some site
in common,̂ Im@P#Im@P8#& may have a~small! imaginary part. In
this case, the real part is plotted.



-

x
e

t-

e

-
e
n-
.
e

tio
S
rre
um
k

a
,
r
g

ys-

is
th
for
ary
uc-
me
wo
ith

gap
-
n-

w

y
ance

n,

ver

e
his

ort-

the

n

wo

rve
ag

t
lot-
i-
und-
e.
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It is true that the local fluctuations ofk are large: forN
528 (T50), ^k2&50.5221 which is larger than the ex
pectation value on threefree spins: Tr@k2#/Tr@1#50.375.
On the other hand, it is both much smaller than the ma
mum quantum value ofk2 (5 3

4 ) and much smaller than th
value obtained in the low-lying singlets on the Kagome´ lat-
tice (^k2&.0.7).27 The last reason why the value of^k2&
should not be interpreted as sufficient evidence ofT symme-
try breaking is that it contains no information but the firs
neighbor correlation

^k2&5
3

2 S 1

4
2^SW i•SW j& D . ~5!

We also performed computations at theJ2522 andJ4
51 points. Unsurprisingly, the ferromagnetic coupling r
duces the chirality. In the ground state ofN528 at J451
andJ2522 we found^k2&50.4791. This is readily under
stood from Eq.~5!. Since^SW i•SW j& is enhanced by a negativ
J2, local fluctuations of chirality are reduced. It is more i
teresting to look at̂Im@P#Im@P8#& as a function of distance
The data are shown in Table II and support the absenc
long-ranged chiral order at theJ2522 andJ451 points as
at the pureJ4 point.

IV. LOW-ENERGY SPECTRAL PROPERTIES

In the previous section we have reported some correla
data showing that the ground-state wave function of the M
Hamiltonian in the spin-liquid phase has short-ranged co
lation functions. We now describe the low-energy spectr
of the system. We emphasize on the spin gap and the bro
symmetries. Again, we concentrate on theJ2522, J451
Hamiltonian.

A. Spin gap

1. Finite-size effects on the ground-state energy

For small sizes the spin gap and ground-state energy
sensitive to the sample shape and size. For this reason
N5` extrapolation of the spin gap value is not straightfo
ward and requires a precise analysis. The apparently irre

TABLE II. Chiral-chiral correlation in the ground state of a
N528 system.̂ Im(P1,2,3)Im(P18,28,38)& at J451 and for two val-
ues of J2. ~1,2,3! and (182838) are clockwise triangles, and
u(123)2(182838)u is the distance between the centers of the t
triangles. The increase of the chirality at distanceA7 is very likely
to be a finite-size effect. For the three other distances we obse
significant decrease of chirality due to the first-neighbor ferrom
netic coupling (J2522).

u(123)2(182838)u J2522, J451 J250, J451

1 20.0285 20.0306
A21
3

51.527 10.0280 10.0356
2 20.0078 20.0132
A752.646 10.0018 10.0009
i-

-

of

n
E
-

en
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-
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lar behavior of the spin gap and ground-state energy for s
tems with less thanN.24 sites~Fig. 10! indicates the short-
ranged rigidity of the ground-state wave function. Th
agrees with the previous section: the characteristic lengj
of the ground-state correlations is a few lattice sites, and
systems of this size, the spectrum is sensitive to bound
conditions. This effect can be used to probe the local str
ture of the ground-state wave function and to identify so
short-wavelength resonances which lower its energy. T
families of samples should be distinguished: systems w
evenN have a low ground-state energy and a higher spin
than the systems withN odd. Within each family, the behav
ior with the size is more or less monotonous: for eve
N (odd-N) systems the energy per site increases~decreases!
with N and the spin gap decreases~increases! with N. The
importance of a six-site periodicity for achieving a lo
energy28 agrees with the6p/3 orientation found by looking
at the short-ranged dimer-dimer correlations~Fig. 7!. The
enhancement of this6p/3 structure in the lowest-energ
systems shows that it captures some important short-dist
correlations.

An important point is that both families, odd and eve
merge for sizesN>N0.30 ~either if we look atE/N or at
the spin gap!. We have interpreted this feature as a crosso
behavior: above the characteristic sizeN0.j2 the finite-size
correction decays exponentially fast.29 Figure 12 also shows
a rapid decay of finite-size effects when approachingN
536. From this argument, theN536 system can almost b
considered as having reached the thermodynamic limit. T
is all the more probable as this sample (636) has the sym-
metries of the infinite lattice and does not frustrate any sh
ranged order that we observed to be favorable.

2. Spin gap

The correlation between the ground-state energy and
energy gap to the firstS51 ~andS5 3

2 , if N is odd! excited

a
-

FIG. 10. Energy and spin gap forJ2522 andJ451 as a func-
tion of 1/N. Squares: evenN systems. Crosses: oddN. When dif-
ferent shapes have been investigated~which is the case for mos
sizes!, only the shape with the lowest ground-state energy was p
ted. The exception forN524 and 12 is meant to illustrate the s
multaneous decrease of the spin gap and increase of the gro
state energy when the spins are arranged in a frustrating shap
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state is indeed precise~see Fig. 11!: the most stable system
~i.e., with E/N minimum! are those with the largest spi
gaps. The different spectra roughly fall onto one line wh
the spin gap is plotted versusE/N. This suggests that th
position on this line is a single parameter which measures
frustration of a system. On the right part of Fig. 11, syste
have important frustration, because of geometric constra
the local structure of the wave function which would min
mize the energy in the infinite systems cannot develop. S
tems on the left part benefit from particular boundary con
tions which allow some stabilizing resonances and there
an E/N lower than in the thermodynamic limit. From th
data ofE/N versusD we can estimate the position of th
infinite system.E/N converges to23.9560.05 ~safe esti-
mate from Fig. 10!. With this energy interval, the value o
the spin gap can then be extracted from Fig. 11. We ob
D51.360.5.

B. Ground-state symmetries in the thermodynamic limit

The spin gap described in the previous subsection ens
that in this region of the phase diagram the system does
spontaneously break SU~2! symmetry at low temperatures

FIG. 11. Same data as in Fig. 10 with the spin gap plotted a
function of the ground state energy.

FIG. 12. Spin gap~squares! and gap to the firstk5A singlet
excited state~crosses!.
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We now turn to theS50 sector and address the question
the ground-state degeneracy and the possibility for a sp
group symmetry breaking. This is important to character
the class of spin liquid this model belongs to.

1. Singlet states in the spin gap

In nearly all even samples (N536, 30, 28, 24, 18, 16, 12!
the ground state belongs to the trivial representation of
point group and translation group. This representation be
one dimensional, the ground state is nondegenerate for fi
N. Above the ground state we find always fewer than
eigenstates in the spin gap~i.e., below the first triplet en-
ergy!. There is no extensive entropy atT50 or any singlet
soft mode ~notice the difference with the Kagome´ lattice
Heisenberg antiferromagnet27!. This implies that the system
at J2522 andJ451 is not a quantum critical system.

We have analyzed the~spatial! quantum numbers of the
low-energy singlet states to detect if some symmetry sec
were collapsing to the absolute ground state. So far, bec
of the poor regularity in the symmetries, this task has o
brought partial results. Here are the most important data
be understood.

~i! There is no low-energy singlet in thek5B sector
(6B are the two corners of the Brillouin zone!. This ex-
cludes any three-step translation symmetry breaking. It a
confirms that the6p/3 dimer order~Fig. 7!, which looks
three-step periodic, is onlylocal.

~ii ! The frequent occurrence ofk5A states in the spin gap
suggests that such states collapse to the ground state and
a two-step translation symmetry breaking (A is one middle
of the boundary of the Brillouin zone!. In particular the en-
ergy gap between the absolute ground state and the firk
5A state drops by a factor of 10 betweenN524 andN
536 ~2.5 atN524 and 0.243 forN536; see Fig. 12!.

~iii ! The N536 singlet sector of theJ2522 andJ451
Hamiltonian has a quasifourfold degeneracy of the grou
state~Fig. 13!. The lowest energy is a single state and t
next energy level, which is immediately above, is threefo
degenerate. Because of the large size of theN536 system
~compared to the supposed correlation length!, we believe
that this feature is a particularly valuable information on t
spectrum of the infinite system.

In the next paragraphs we analyze these results. First
argue that these data are not in favor of ‘‘spin-Peierls’’-li
symmetry breaking. Then we show that a fourfold dege
eracy could be of topological origin. Third, we explain wh
the system is probably not a chiral spin liquid. Eventual
we discuss the link between the MSE spin liquid and so
kind of VBS ~or Haldane! phase on a square superlattice w
four spins in the unit cell.

2. No spin-Peierls symmetry breaking

The N536 singlet sector of theJ2522 and J451
Hamiltonian has a quasidegeneracy of the ground state~Fig.
13!. The lowest energy is a single state and the next on
three-fold degenerate~impulsionsk5A1,2,3). As mentioned
before, the behavior of the singlet gap to the firstA1,2,3 state
~Fig. 12! suggests that these two levels are degenerate in
thermodynamic limit. The next pair of energies inS50 may
also be seen as asymptotically degeneratek50,k5A i states
~Fig. 13!.
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The point is that no pattern gives a fourfold or eightfo
degeneracy compatible with the quantum numbers of th
four or eight lowest eigenstates. In particular, any lon
range-ordered dimer covering leads at least to 12 degen
states. For bigger patterns~four-site rhombus, for instance!
the number of broken symmetries is even larger and
would be the degeneracy. Therefore, the 113 degeneracy of
the two first eigenvalues (k50 andk5A1,2,3) cannot be ex-
plained in such a conventional spin-Peierls-like picture.

3. Topological degeneracy

But this degeneracy matches the prediction of a topolo
cal degeneracy due to the periodic boundary conditions
to the nontrivial topology of the torus.

Most of the important arguments for this topological d
generacy were proposed by Rokhsar and Kivelson,30 Read
and Chakraborty,31 and Sutherland32 but here we sketch a
more formal demonstration.

Dimer and loops. The starting point is a dimer represe
tation of the wave function. As remarked by Sutherland32

the overlap^CuC8& between two normalized valence-bon
statesC andC8 can be diagrammatically computed by co
structing theirtransition graph. This graph is obtained by
drawing on the same lattice the oriented bonds ofC andC8.
The result is a set of locally oriented and nonintersect
loops which cover the lattice. Letn(CøC8) be the number
of loops andx(CøC8) the number of bonds to be reverse
for each loop to have alternating bond orientations. The
sult is

^CuC8&52n(CøC8)2N/2~21!x(CøC8). ~6!

As an illustration, consider the trivial caseC5C8. All loops
are of length 2 and their number isn(CøC)5N/2. Each
two-site loop is already alternated andx(CøC)50. So we
get ^CuC&51. From the overcomplete family of valence

FIG. 13. Lowest-energy levels of theN536 sample (J2522
andJ451) in the sectors ofk50, A, andB. The symbols represen
the quantum number of the different eigenstates. For instance
ground state (S50, E52142.867) belongs to the trivial represe
tation of the spatial group~solid up triangle, labeledk50, R2p/3

51, Rp51, s51).
se
-
ate

o
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-

g
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bond states one can formally extract a~nonorthogonal! basis.
In this basis, the ground sate reads

uc&5(
C

c~C!uC&. ~7!

The normalization ofuc& gives

^cuc&5 (
C,C8

@c~C!†c~C8!2n(CøC8)~21!x(CøC8)#. ~8!

Small loop hypothesis. This equation can be rewritten i
term of a sum over the transition graphs, or loop coveringG
of the lattice:

^cuc&5(
G

2n(G)~21!x(G)G~G!, ~9!

where we defined

G~G!5 (
C,C8/CøC85G

c~C!†c~C8!. ~10!

This is possible because any decompositionCøC8 of a loop
coveringG has the same (21)x(CøC8)5(21)x(G) as well as
the samen(CøC8)5n(G). We now turn to the importan
hypothesis: we assume that the only graphsG which contrib-
ute to Eq.~9! are those which do not contain any loop su
rounding the torus. This statement about the noncontribu
of topologically nontrivial loops implies that there should n
be any long-distance coherence in the wave function.
stress that this is a much stronger requirement that dem
ing short dimers~for instance, a valence-bondsolid or a
valence-bondcrystal state do not fulfill this hypothesis!. In
the MSE spin liquid all the correlations we measured~spin-
spin, chiral-chiral, and dimer-dimer! seem to decay exponen
tially over a distancej and we do nothing but assume th
the loops contributing to Eq.~9! have also a finite character
istic length scale. This strong condition implies the fourfo
degeneracy of the ground state. We propose the argum
summarized below.

Cuts along the torus and fourfold degeneracy. The idea is
now to choose a cutD surrounding the torus in one direction
Each valence-bond stateC has a numberD(C) of bonds
crossingD and it is possible to change the sign of the co
figurationsC for which D(C) is odd:

uc8&5(
C

~21!D(C)c~C!uC&. ~11!

If the sample has an odd number of sites in the direct
perpendicular toD and if uc& has an impulsionk, it is easy to
check that the stateuc8& has an impulsionk85k1A, where
A is one middle of the boundary of the Brillouin zone~see
inset of Fig. 13!. But we have also shown33 that uc8& has the
same energy asuc& provided uc& only ‘‘contains’’ small
loops ~hypothesis above!. This twofold degeneracy must b
extended tofour when the sample has a 2p/3 rotation sym-
metry since irreducible representations for wave vectok
5A are of dimension 3. A similar construction was provid
by Wen38 in the framework of a mean-field model forP- and
T-symmetric spin liquids. In Wen’s work, a stateuc8& is

he
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built from the original ground stateuc& by a singular gauge
transformation on the bonds degrees of freedom. This tra
formation amounts to introduce a12 flux quantum through a
noncontractable loopD.

Now we can interpret theN536 singlet sector in the fol-
lowing way: as the system becomes larger thanj the topo-
logically nontrivial loops grow scarce exponentially wi
AN/j. Consequently the lowest singlet eigenstate beco
fourfold degenerate (k50 andk5A1,2,3). At N536 this to-
pological degeneracy is still not very accurate but we c
clearly distinguish two quasiquadruplets.

4. Chiral spin liquid

Some time ago it was suggested that an antiferromagn
quantum spin liquid could bechiral and could break the
time-reversal~T! and parity~P! symmetries.34–36 This sce-
nario was definitely discarded in the case of a simple Heis
berg Hamiltonian on a triangular lattice.21 The situation on
the Kagome´ lattice is more ambiguous.27 In the MSE case,
the presence of a gap in the magnetic excitations and
degeneracy of the ground state in the thermodynamic l
would be consistent with a chiral theory. Indeed, Wen37 ar-
gues that an incompressible chiral fluid should have
2kg-fold vacuum degeneracy on a manifold of geniusg ~but
this is not specific to chiral models: one also finds a 2g to-
pological degeneracy inP- and T-symmetric models38!. On
the other hand, as underlined before, the MSE does not
port LRO in the chiral parameterk52(SW 13SW 3)•SW 2. There-
fore, the only possibility would be a hypothetical ‘‘chira
spin-liquid’’ ground state35,36 where the expectation value o
a cyclic permutation operatorPi 1 ,i 2 ,i 3 , . . . ,i n

acquires a non-

zero imaginary part on large loops,i 1 ,i 2 ,i 3 , . . . ,i n . In such
theories elementary excitations are unconfined spin-1

2 excita-
tions. The spectra ofN527 andN528 are the largest pair o
consecutive sizes we diagonalized and are believed to
close to the asymptotic limit. Their comparison does n
plead in favor of this unconfined spinon hypothesis:
ground-state energy per site ofN527 (ES50/N523.919)
is slightly lower than the first triplet energy per site ofN
528 (ES51/N523.918 and ES50/N523.963). This is
rather a signature of elementaryspin-1 excitationsand makes
the chiral scenario unlikely.

5. VBS/Haldane system

We have shown, so far, that the MSE spin liquid is ch
acterized by a low ground-state degeneracy. For half-inte
spins in one dimension, the Lieb-Shultz-Mattis39 ~LSM!
theorem forces the ground state to be degenerate or gap
Some attempts to generalize it in two dimensions40 suggest
that a ground-state degeneracy could also be generic
~half-integer! gapped state in two dimensions. From th
point of view, our results in the MSE case are not une
pected. But such a degeneracy is usually associated w
spontaneous breaking of a discrete symmetry, say, tran
tion, and a dimer or plaquette local order parameter. If
analysis of theN536 spectrum is correct, such a spin-Peie
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phenomenon is absent. Without any evidence of a sim
local order parameter, the topological point of view is natu
and states that a ground-state degeneracy can occur wi
any local order parameter breaking a discrete symmetry~a
famous example is the Laughlin wave function, the discr
degeneracy of which depends on the space topology41!.
However, the translation symmetry is almost certainly b
ken in the MSE case~at least four states with different im
pulsions are asymptotically degenerate! and one should be
careful before excluding the possibility ofany kind of LRO.
In a search for an alternative to the topological degenera
we looked for explicit wave functions~for half-integer spin!
with a low degeneracy and the minimum number of brok
spatial symmetries to compare with numerical results.

For high spins matching the coordination number (S
5z) the VBS wave function is nondegenerate. When t
criterion is not satisfied, nevertheless, the VBS proced
can help to write wave functions with few broken symm
tries. The idea is to chose a superlattice withn spins in the
unit cell and of coordination numberz5n. On the superlat-
tice, a unique VBS state is written by identifying then spins
of a cell as a larger spinS5n/2. The state we obtained has
degeneracy which is the number of possibilities to defin
superlatticeL over a real~triangular! lattice. Consider theS
52 VBS wave function for the square lattice. It is mapp
onto the spin-12 triangular lattice by identifying theS52
spins of the square lattice to four spinss5 1

2 ~on a rhombus!
of the triangular one@Fig. 14~a!#. The choice of the position
of the square superlattice is done among 12 different po
bilities: a configuration can be translated at four differe
places and rotated in three directions. One should rem
that these states do have some long-ranged order. LetPa be
the projection operator of the rhombusa in its S52 sub-
space. By construction, the eight-point correlation funct
^PaPb& is long ranged.

We computed the ground-state energy inside this
dimensional VBS subspace on a small system (N512 atJ4
51 andJ2522) and found a good variational energy. Th
exact ground-state energy isE/N.24.128 and the VBS en-
ergy is E/N523.75. The energy scale is given by the e
ergy of the ferromagnetic state (E/N50), and the energy of
the ground stateE/N523 for classical spins. This varia
tional result isthe best achieved so farand is even much
better than the Schwinger-boson energy for this Hamilton
@the Schwinger-boson solution is a two-sublattice~NLRO!
collinear state withE/N522.96#. The reason for this com
petitive energy is that the VBS construction naturally pr
vides some local ferromagnetism inside a plaquette wh
lowers J2P1,2 and some antiferromagnetism at larger d

FIG. 14. Left: black rhombus represent theS52 spins of the
VBS wave function. They form a square lattice~dashed lines!.
Right: honeycomb superlattice of three-site plaquettes on the tr
gular lattice. There are 18 different ways to place this honeyco
superlattice on the triangular one (332 translations and three rota
tions!.
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tance~between neighboring rhombus! which ensures a low
J4(P1,2,3,41H.c.). When the size of the unit cell is varie
one tunes the strength of the antiferromagnetic correlat
at short distance. For instance, it is possible to enhance
we start from the wave function of theS53/2 honeycomb
lattice@Fig. 14~b!#, where the unit cell has only three sites.
this case we find an energy slightly higher (E/N523.42 on
12 sites!. On the other hand, varying the ferromagnetic co
pling J2 in the Hamiltonian could bring the ground sta
closer to a VBS wave function.

The 12 VBS states are not coupled by any local Ham
tonian in the thermodynamic limit, and should therefore
degenerate in an infinite system. In a theory where all e
tations are gapped, the low-energy physics~except for pos-
sible edge states! is determined by the degenerate grou
state. Therefore, this 12-fold degeneracy characterizes
fixed point and we expect the same degeneracy in the M
problem if it belongs to this universality class. Unfortunate
the quantum numbers only partially coincide with the low
eigenstates found in theN536 spectrum. So despite a goo
variational energy onN512, these particular trial states d
not provide a quantitative explanation of the fourfold
eightfold degeneracy observed on 36 sites. However,
family of these extended VBS states certainly captures a
of the local constraints imposed by frustrating MSE co
plings. Furthermore, we cannotcompletelyexclude that the
N536 might not be a faithful picture of the infinite syste
spectrum and that the ground state could have a com
valence-bond solid order of the type we have just describ

V. SUMMARY AND CONCLUSIONS

We analyzed the spin-liquid phase of MSE model on
triangular lattice. Due to important frustration, LRO is d
stroyed by quantum fluctuations at zero temperature.
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system has short-ranged correlations:^SW i•SW j&, dimer-dimer,
and chiral-chiral correlations probably decay exponentia
with distance. The spectrum has a spin gap and the comp
son between odd and even sample pleads in favor of sp
excitations. As for the spatial symmetries and degenerac
the ground state~presumably 4 or 8!, they provide evidence
of no spin-Peierls or simple plaquette order. This is a gen
feature in systems where the spin matches the coordina
number (2S5z) and where a VBS wave function can b
constructed, but it is unconventional for spin1

2 . We proposed
two interpretations. The first possibility is a VBS o
Haldane-like phase. We constructed such a wave funct
which is not a tensor product of plaquette states. Pres
numerical data on the ground-state symmetries do not c
pletely agree with this particular trial state, but because of
very low variational energy, such a scenario cannot be
cluded. Second, this degeneracy might be a consequen
the nontrivial topology implied by periodic boundary cond
tions. We emphasized that it must be the case if the sys
has absolutely no long-ranged coherence.

This spin-liquid phase might be the very first magnet w
a ‘‘disordered’’ and gapped quantum ground state with
simple local order parameter in two dimensions. From t
point of view it can be seen as a prototype of the RVB st
as was proposed by Anderson.17
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